If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2-22t+112
We move all terms to the left:
0-(-16t^2-22t+112)=0
We add all the numbers together, and all the variables
-(-16t^2-22t+112)=0
We get rid of parentheses
16t^2+22t-112=0
a = 16; b = 22; c = -112;
Δ = b2-4ac
Δ = 222-4·16·(-112)
Δ = 7652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7652}=\sqrt{4*1913}=\sqrt{4}*\sqrt{1913}=2\sqrt{1913}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{1913}}{2*16}=\frac{-22-2\sqrt{1913}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{1913}}{2*16}=\frac{-22+2\sqrt{1913}}{32} $
| (2x+4)(x-7)=0 | | 3x^2-8x+17=20 | | 6x^2+1x=0 | | 36+x^2-12x=0 | | 2^x(4x-1)=11 | | 17.05+d=23.10 | | 0.75(0.5−6c)=(0.375+4.5c) | | -1x-10=-3x-8 | | 2/x-2=4/x+2 | | e+(-10)=34 | | 3k+24+k+5=37 | | 70=4w+10 | | 3x+6=4×+2 | | -1+(-1)+(-1)+(-1)=x | | 0.2(x–20)=44–x | | 25=x/2+14 | | -9y=8.28 | | -6j+3=-3(2j-1) | | 10a-2a=4 | | x+5/2x-2=1 | | x2+x+2/9=0 | | 2x+17=6x-15 | | 2-2s=(3/4 | | 0.4(x-40)=46-x | | -x+16=-11 | | 0.5a+a=0.1 | | x2-8x=39 | | D=|105-35t| | | -6v-24=-8(v+2) | | x+3/5=x+7 | | 5/7/x=1250 | | 2x-4/6=3 |